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We describe a numerical method to compute the solution of a system of conservation 
laws subject to an initial condition and certain boundary conditions which involve a 
free boundary. This method is specially designed to solve the Eulerian equations of 
compressible flow. It is based on finite elements relative to the space variables and the 
time; the elements near the boundary (or the interfaces) are chosen in such a way 
that they follow the boundary (or the interfaces); the choice of the interior elements 
is arbitrary at each time step. For the computation of discontinuous solutions (shocks), 
we introduce a special type of pseudoviscosity. Numerical results are given. 

I. INTRODUCTION 

The numerical solution of the Eulerian equations of hydrodynamics by finite 
difference methods exhibits serious difficulties for the treatment of free boundaries 
and interfaces, since these surfaces generally do not go through the mesh points. 
In this paper, we describe a finite element method which avoids this inconvenience; 
it is a variant of a method used previously by the authors for the Stefan problem [2]; 
for greater simplicity, we describe it in the case of one space variable, but the 
extension to the multidimensional case is straightforward. 

The elements are polyhedrals of the space-time space; those near the boundary 
(or interfaces) are chosen in such a way that some of their vertices are located on 
the boundary (or interfaces); the choice of the interior elements is arbitrary at 
each time step, which leads to a great flexibility in the application of the method. 

The method that we describe in this paper is the most elementary method based 
on space-time finite elements; many variants can be derived by using various 
types of interpolating functions. 

Let us also mention that our method presents a vague analogy with the method 
used by Amsden and Hirt in the code YAQUI [l]. 
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In Section II, we introduce the problems that we want to solve; we consider a 
general system of conservation laws and the particular cases of the Eulerian 
equations of hydrodynamics for an isentropic flow and for a nonisentropic flow. 
We transform the system of partial differential equations into an integral identity 
which will be the basis of our method. 

In Section III, we describe our method in the simple case of a single conservation 
law. In the particular case of rectangular elements, our method turns out to be 
identical to the well-known Crank-Nicolson scheme. 

In Section IV, we describe our method for a general system of conservation 
laws and we examine in detail the application to hydrodynamics. 

In Section V, we introduce a special pseudoviscosity term which is necessary for 
the computation of discontinuous solutions. 

Finally, Section VI is devoted to numerical experiments for three different 
problems: Burgers equation (scalar case), isentropic flow (system of two equations), 
and nonisentropic flow (system of three equations). 

II. CONSERVATION LAWS AND HYDRODYNAMICS EQUATIONS 

IIa. Generalities 

Let us consider a system of conservation laws of the form: 

@v/at) + (a/ax) F(V) = 0, (2.1) 

where x is the space variable (l-dimensional case), t the time variable, I’ an 
unknown vector-valued function of (x, t), and J’(V) a given vector-valued 
differentiable function of V. We denote by oc8) andf (*I, 1 < s < m, the components 
of V and F(V). 

We want to solve (2.1) in a region W of the form 

W = {(x, t); 0 < x < a(t), t > 0}, 

where a(t) is a certain function oft (see Fig. 1). The function a(t) can either be given 
(fixed boundary) or depend on the solution I’ (free boundary). 

We impose on the function V an initial condition 

V(x, 0) = V(x), (2.2) 

where VO(x) is a given function of x, and boundary conditions which depend on 
the function F(v> in the following way. Let F’(V) be the matrix with coefficients 
018, = 8f(“)/Mr) and let h,(V) be its eigenvalues. The curves Q, which satisfy 

dxldt = X8(V), 
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are the characteristic curves of (2.1); let us orient them towards increasing values 
of t. Let P be a point of the boundary, either the left part of the boundary (x = 0) 
or the right part of the boundary (x = u(f)), and let m’ be the number of charac- 
teristic curves through P which enter the region 99, 0 < m’ < m. Then, at the 
point P we impose m’ scalar boundary conditions on the function V (see Fig. 1). 

FIG. 1. Characteristic curves and boundary conditions. In this case we have: m = 3, m’(P) = 
1, m’(P) = 1; we must impose one boundary condition at P and one at P’. 

We will now write the system (2.1) in the form of an integral identity. Let G be the 
part of 9 which lies between the times t = TV and t = 72 , 0 < 71 < 72 , and let 
8G be the boundary of G counter-clockwise oriented. Let @(x, t) be a vector-valued 
function defined and continuous in G and which admits bounded (possibly dis- 
continuous) first derivatives. Taking the inner product of (2.1) with @ and 
integrating by parts in G. we get 

J-j v.$dxdt+jJ F(v).~dxdt+~~G~~(v~~-F(v)dI)=o, V@. 
G G 

(2.3) 

This identity can be written in a slightly different form if we denote by C,, , C, , C, , 
C, the parts of i3G corresponding to x = 0, t = TV , t = 72 , x = a(t), respectively, 
and oriented towards increasing x or t (see Fig. 2). Then, (2.3) becomes 

- j- 
C2 

@. Vdx+lc,@. Vdx+j$.F(V)dt 

+ J‘, @ * (V dx - F(V) dt) = 0, V@. 
a 

By choosing Cp identical to arbitrary constant vectors, we get 

(2.4) 

I Vdx - J‘c, Vdx = s, (Vdx 
ca Q 

- F(V)dt) - Ico(Vdx - F(V)dt) (2.5) 

(relation of conservation). 
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FIG. 2. The domain of integration G and the oriented portions of its boundary. 

Finally, let us remark that the integral identity (2.3) makes sense even for functions 
V which are not differentiable nor continuous. Any function V which satisfies (2.3) 
is called a generalized or weak solution of (2.1). It is easy to prove the following 
classical result. If a weak solution V is discontinuous along a line %?, then we have, 
along V, 

[V] dx - [F(V)] dt = 0, (2.6) 

where [V] and [F( I’)] denote the jumps of the functions V and F( V) across the line %7 
(see [51). 

IIb. Eulerian Equations of Compressible Flow 

We consider a compressible nonviscous fluid lying in the slab 0 < x < a(t). We 
assume that body forces, heat conduction, and energy sources are absent. We use 
the following notations: p is the density, u is the speed (in the direction of the space- 
variable x), E is the total energy per unit-volume and p is the pressure. The pressure 
is related to p, u and E by the equation of state of the fluid: 

P = P(P, 4 (2.7) 

where E = E - 4pu2 and p(p, l ) is a given function of p and E. 
The Eulerian equations of the flow, for slab symmetry, are expressed in the form 

(2. I), where 
P PU 

v= pu 

i 1 
and F(V) = pu2+p 

i 1 

. (2.8) 
E Eu+pu 

We can also write F(V) = UY + H(V), where 

0 
H(V)= p . 0 Pu 

The function x = a(t) is not given; it will be determined by the condition that 
the corresponding free boundary follows the movement of the fluid, which yields 

a’(t) = #(a(t), t). (2.9) 
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On the free boundary, we impose a condition on the pressure 

p@(t), t> = 40, 

where n(t) is a given positive function of t. 
On the fixed boundary x = 0, we impose a condition on the speed 
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(2.10) 

u(0, t) = 0. (2.11) 

It is easy to verify that the boundary conditions (2.10) and (2.11) are in 
accordance with the criterion given in IIa; the slopes of the characteristic curves are 
U, u f c, where c = ((a~/+) + [(p + l )/p](Q/&))~l~ > 0 is the sound speed; 
it follows that we need one boundary condition on the left (for x = 0) and one on 
the right (for x = a(t)). 

Since dx - u dt = 0 on C, and C, , the integral identity (2.4) can be written as 

ss, V.$dxdt + jjGF(V) ?$ktdt 

- j- CVdx+/ 
C2 Cl 

@4’d~+~c~@~H(V)dt-j-~~MI(V)dt=O, 

(2.12) 
and the relation of conservation (2.5) as 

s Vdx - 
c2 

SC, V dx = - s,. WV) dt + SC, fW 4 (2.13) 

which is a condensed vector-form for the well-known relations of conservation 
of mass, momentum, and energy. 

Finally, the jump condition (2.6) yields the classical Rankine-Hugoniot relations 

dx/dt = b4/[~1 = f~“l/bd = Wu +PWI. 

Particular Case: Isentropic Flow 

In this case, E is a function of p and therefore the equation of state (2.7) implies 
that p is a function of p alone: 

P = PW (2.14) 

Then, the f%rst two equations are not coupled with the third one; we can write them 
in the form (2.1) with 

F(Y) = uV+ W?‘), WV> = (i). (2.15) 



26 JAMET AND BONNEROT 

The slopes of the characteristics are u f c where c = (p’(p))‘/“. We impose the 
same boundary conditions as before. 

III. NUMERICAL METHOD FOR A SINGLE CONSERVATION LAW 

To facilitate the understanding of our method, we describe it first in the simple 
case of a single conservation law: 

@/W + (Wx)f(v) = 0, (3.1) 

wheref(v) is a given function of P. We want to solve this equation in the region W 
defined in the previous section; to simplify further, we assumes at first, that the 
function x = a(t) is given. We impose the initial condition: 

z)(x, 0) = v”(x) = given function of x. (3.2) 

For the boundary conditions, let us assume for example that f’(v) > 0 for x = 0 
andf’(v) > a’(t) for x = a(t). Then, we impose a boundary condition on the left: 

~(0, t) = g(t) = given function of t, 

and no boundary condition on the right. The integral form of (3.1) is 

-&(V, (?J) = 0, V% 
where 

A &, v) = ss, v f$ dx dt + ss, f(v) 2 dx dt - SC, TV dx 

+ SC, vu dx + SC, ~0) dt + j-c0 dv dx - f(v) 4, 

with the same notations as in (2.4). 
Taking q 3 1, we get the relation of conservation: 

I v dx - I vdx = 
6 Cl 

j” 
G 

(0 dx -f(u) dt + j-cof(vl df. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

To appxoximate the problem (3.1), (3.2), (3.3), we proceed as follows (see [2]). 
Let I be a positive integer. We consider a set of points Pin = (xi”, tn) for 
0 <i<Iandn >O,where 

0 = to < tn < tn+l and 0 = xon < xtn < x:+1 < qn = a(P) 
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for 0 < i < Z - 1 and n 3 0. We denote by Kin the trapezoid with vertices 
Pi”, Pi!+1 , P$‘; 7 Pl+’ (see Fig. 3). Let h be an unspecified parameter with charac- 
terizes the grid formed by the points Pi” and which converges to zero as the grid 
is refined. Let W, = un>a UiI’, Kin. We denote by Y< the space of all continuous 
functions defined on &?,, which are linear along the four sides of each trapezoid 
Kin and which are linear with respect to x inside each trapezoid Kin; the functions 
of Yh are uniquely determined by their values at the points Pin. Let gh be the sub- 
space of all q E -V;, such that q$Pi”) is independent of n; b, is a space of dimension 
I+ 1. 

Our numerical method is based on a discrete analog of (3.4) with G = G” = the 
region G obtained for 71 = tn and r2 = t n+l. Let A” (a, v) be an approximation 
of &,(a, y) obtained by replacing Gn by Gn = &‘, K,* and by computing the 
various integrals involved by means of numerical quadrature formulae that we will 
specify later. Then, we approximate the problem (3.1), (3.2), (3.3) by the following. 

x 

FIG. 3. The discretization of the region W. 

Discrete problem: 

Find v,, E rY;, such that: 

v&(Pp) = vO(x,p), for 0 < i < Z, (3.7) 

vh(pon) = &“)9 for n > 0, (3.8) 

&h, v,) = 0, Vg,E%., Vn > 0, (3.9) 

where 9, is a certain subspace of 8, which depends on the boundary conditions of the 
problem and that we are going to specify. 

For each n the relation (3.9) represents a system of nonlinear algebraic equations 
that we can write in terms of the values of the unknown function I)h at the grid 
points {P,n>i-,, and {P~+‘]~xo ; the number of these equations is equal to the 
dimension of the subspace Yh . Suppose that we have computed v,, until the time 
tn; we want (3.9) to permit the computation of vh at the time tn+l; taking into 
account the boundary condition (3.8), there are Z unknowns: the values of ah at the 
points Py+’ for 1 < i < I; so, we need I equations and, consequently, Yh must be 
of dimension I. 
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Moreover, we want vh to satisfy the discrete analog of the conservation relation 
(3.6), obtained by letting g, = 1 in (3.9) in the same way as (3.6) was obtained by 
letting CJI = 1 in (3.4). For this reason, we will impose to Y, the following condition: 
Yh must contain the function q~ which is identical to 1. 

For each i E (0, I,..., Z>, let CJ+) be the function of b, such that: 

p(pj”) = aij = 1;; if ,j = i, 
if j # i. 

The functions q~ w form a basis of 6, and they satisfy 

c 
#i’ s 1. (3.11) 

i=O 

We will choose for 9, the subspace ShL generated by the set of functions 
{lp’ + p, p, p,..., I$‘)}. This space satisfies the two conditions stated above. 

If we write (3.9) for each of the basis functions of Yh , the resulting system of 
algebraic equations has a tridiugonal structure for the unknowns z$+l, $+I,..., vF+l 
(note that the known value v:+~ appears in one equation, while the unknown 
value vy+l on the right boundary appears in two equations). 

Remark 3.1. In the case when we must impose a boundary condition on the 
right, instead of on the left, we choose for Y* the subspace ghhR generated by 
{($)'O', @l),***, (-p-Z), pl' + I.#‘)}. In the case when we must impose a boundary 
condition on both sides, i.e., on the left and on the right, we choose for & the sub- 

Subswce c,’ 
(dimensionI) 

x 

subspace cc 
(dimension I) 

x 

Subspace c,L 
(dimension I-1 1 

I 

FIG. 4. The basis functions of the spaces 8*, &A L, ghR and 8:‘. The choice of 9’h depends 
on the boundary conditions as follows. 

Case 1: no boundary condition: Lfa = gh. 
Case 2: one boundary condition on the left: Y’& = &hL. 
Case 3: one boundary condition on the right: Yh = gAR. 
Case 4: one boundary condition on each side: .Yb = OfR. 
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space 8:” generated by {#O) + v(l), CJ+,..., c$~-~), @-l) + @)}. Finally, when we 
must impose no boundary condition at all, we choose Yh = 8, . The basis functions 
of the spaces 8, , ghL, ~5’~~ and EiR are represented on Fig. 4. 

Choice of the Numerical Quadrature Formulae 

To complete the description of our method, it remains to specify the numerical 
quadrature formulae that we use to approximate the integrals appearing in the 
expression AGn(~, y). The line integrals are computed by using the trapezoidal 
rule on each of the elementary segments joining two neighbor grid points. The 
surface integrals are computed by using the following formula on each of the 
trapezoids Kin. For any continuous function Z/J, the integral 

is approximated by 

Note that IKin = IKin for all 4 E ‘%$ . 

Explicit Expression of the Discrete Equations 

After easy computations such as those which have been developed in [2], we get 
the following expressions for Eqs. (3.9), with the notations vin = v,(Pin) and 
fl = f(v,fi). 

For 1 < i < I, 

Fori= 1, 
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For i = 1, 

*[(xy-:’ - x;&;mL_l + uy:;> - (x;” - Xjn)(Cin + $‘“) 

+ $[(Xy” - XT?:) ll:+l - (Xi” - X:-l) Uin] 

+ t(t”+l - t”)(Q +fi”” -“& -gy> = 0. (3.15) 

Remark 3.2. In the particular case of equal rectangular elements, i.e., when 
x.” = x:+1 = xLl + h = x72.. + h = x:+1 - h 
a&e, setting Pi-l - tn = k and dividing by -hk, 

= xi”+:’ - h, Eq. (3.13) becomes, 

[(u:+’ - ui”)/k] + 3 ([(fF+l - fr-l)/2h] + [(fy$ - fF?;/B]) = 0, (3.16) 

which is the classical Crank-Nicolson scheme. 

Remark 3.3. In the case of rectangular elements, our method is also the same 
as the method of Swartz and Wendroff [lo] except for the use of numerical 
quadrature formulae; we get their method if we compute exactly the integrals 
relative to x and use the trapezoidal rule to approximate the integrals relative to t. 

Numerical solution of the System of Algebraic Equations 

The system of algebraic equations (3.9) is of the form 
Mnyn+l + (tn+l _ t”) Nfn+l = d”, (3.17) 

where vn+l denotes the vector of components (u;“}:=, , fn+l denotes the vector of 
components {~~“}~=, , M” is a tridiagonal matrix which depends only on the 
trapezoids K,“, N is a constant tridiagonal matrix (with coefficients 0, &$) and d* 
is a vector which depends only on known quantities at the time tn and on the given 
boundary value vF+‘. 

Given all the values at time t n, suppose that we choose the trapezoids Kin so that 

j Xg+’ - Xin / < C(tn+l - t”), Vi, (3.18) 

where c is a certain constant. Then, the matrix M” is diagonally dominant for 
(tn+l - t”) small enough and converges to a diagonal matrix as (tn+l - P) converges 
to zero. 

To solve the system (3.17), we perform the following iterations. 
&fnyn+LZ+l + (tn+l - t”) Nfn+lJ = dn, (3.19) 

where I denotes the iteration index. To start the iterations we take vn+lvo = vn. 
The method converges for (t”+l - P) small enough (relative to the spatial mesh 
and to the derivative off). 
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Treatment of a Free Boundary 

Let us now assume that the function a(t) is not given but depends on the solution 
v by a relation of the form 

a’(t) = btv(&), O), (3.20) 

where b(v) is a given function of v. 
Let an = a@) denote the approximation of a(P). At each time step, we must 

compute a n+l and v”+l. The trapezoids Kin and, therefore, the matrix M” depend 
on a”+l. We approximate (3.20) by 

a n+1 = an + *(P+l - t”)(b; + b,“+l), (3.21) 

where b,* = b(v,“), and we perform the iterations 

an+l.Z+l = an + *(tn+l _ t”)(b,” + b;“+l*“), 

~~.z+I~R+~.z+~ + (p” - t”) Nfn+lJ = d” 
(3.22) 

IV. NUMERICAL METHOD FOR A SYSTEM OF CONSERVATION LAWS 

IVa. General Case 

Let us now consider the general system (2.1) with the initial condition (2.2) and 
appropriate boundary conditions which depend on F’(V), say m, scalar conditions 
on the left boundary (X = 0) and m2 scalar conditions on the right boundary 
(X = a(t)), with 0 < m, < m and 0 < mZ < m. We assume at first that the 
function a(t) is given. 

As in the scalar case of Section III, our method is based on a discrete analog of 
the integral identity (2.4). Let &(I’, 0) be an approximation of the left-hand side 
member of (2.4) with G = G”. We approximate our problem by the following. 
Discrete problem. 
Find a function Vh E (Qm which satisfies the initial condition at the points Pt, the 
boundary conditions at the points PO” and PI”, and the condition 

Afi(Vfi ) CD) = 0, V@E%2/,, vn > 0, (4.1) 

where uyh is a subspace of (&‘n)m which depends on the boundary conditions of the 
problem that we are going to specify. 

The condition (4.1) must permit the computation of V, at the time tn+l once 

581/18/r-3 
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we know the values of V, at the time tn. Taking into account the boundary 
conditions, we need (m(1+ 1) - m, - m2) equations; hence, the space g/h must 
be of dimension (m(I + 1) - m, - mz). Moreover, in order that the approximate 
solution Vh satisfy the discrete analog of the relation of conservation (2.5), we 
require CYh to contain all constant m-vectors. These considerations lead to the 
following choice of the space g/h . 

Let us write ?YJh = %Yi” x CY3/p’ x .** x ?Yim). We will choose the spaces CYp) 
so that 

(i) 3Yr’ E (6, , c?~~, ghR, G?‘“,““>, for each s. 
(ii) The total number of superscripts L (respectively R) which appear in all the 

spaces gy’ must be equal to m, (respectively mJ. 
(iii) If the left boundary value of a certain component U(~) is imposed by one 

of the boundary conditions, then the superscript L must appear in ??!F’ for 
the same value of s, i.e., we must take g/I%) E {c?,~, c?,““}. A similar condition 
is imposed on the right. 

The foregoing rules do not in general determine C!Y/, uniquely. In general there 
will remain several possible choices which correspond to different treatments of 
the boundary conditions (See IVc). 

IVb. Application to Isentropic FIow 

We consider the particular case (2.15) with the pressure p given by (2.14). The 
boundary conditions are (2.10) and (2.11) together with (2.9). On the right, the 
value of p = p(p) is imposed by (2.10) and therefore the value of v(l) = p is 
imposed (we assume that the function p(p) is strictly increasing); on the left, the 
value of P) = pu is imposed, since (2.11) implies pu = 0. Applying the criterions 
(i), (ii), and (iii) of the previous paragraph for the choice of ?!Yh , it follows that we 
must take 

cY/h = CT&R x b,L. (4.2) 

In this case, the choice of @Yh is unique. 
For the computation of the expression A”(V, 0) we use the form (2.12) of the 

integral identity (2.4) in which we have taken account of the exact relation 

s @ * V(dx - 24 fit) = 0. CC2 
For the computation of the free boundary, we approximate (2.9) by 

a n+l = an + +(tn+l - tn)(u; + 24~“‘). (4.3) 
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For the numerical solution of the resulting system of algebraic equations, we 
use an iterative method which is similar to the method (3.22) described in the 
previous section. At each iteration, we must solve a tridiagonal system of linear 
equations. 

IVc. Application to No&entropic Flow 

Now we take V and F(V) as defined by (2.8) with component p given by (2.7). 
The boundary conditions are the same as before; the value of the v(2) = pu on the 
left boundary is imposed by (2.11); however, condition (2.10) involves the three 
components of the vector V since the pressure p is now given by (2.7) (instead of 
(2.14) in IVb). 

According to the criterions (i), (ii), and (iii) of IVa, the superscript L must appear 
in ?Yy% and the superscript R must appear in one of the spaces gy). This leads to 
the three following possible choices of ?Y/, . 

Either: Yh = 6, x &hL x fThR, (4.4a) 

Or: gyh = &hR x E*” x 6, ) (4.4b) 

Or: ?Yh = E, x c?YLR x & h. (4.4c) 

Each of these choices corresponds to a different treatment of the condition on the 
free boundary. In the numerical experiments described in Section VI, we have used 
the space gu, defined by (4.4a); the other two possibilities have not been numerically 
tested. 

Treatment of the Interfaces 

An interface between two fluids can be treated like a free boundary. The position 
of the interface at the time tn+l is computed by a formula analogous to (4.3). The 
space gh of test functions @ used for each fluid on each side of the interface is 
the same as the space g3/, used previously for a single fluid. 

V. INTRODUCTION OF DISSIPATION 

It is well-known that the Crank-Nicolson scheme (3.16) gives rise to oscillations 
when we use it for the computation of solutions which are discontinuous or rapidly 
changing. Our method, which is an extension of the Crank-Nicolson scheme, has 
the same disadvantage. To remedy such a disadvantage it is classical to introduce 
a dissipative effect (pseudoviscosity) in the numerical scheme (see [9]); the choice 
of a suitable pseudoviscosity depends on the numerical scheme that we are using. 
We will describe here a procedure that we have used to introduce dissipation in 
our scheme; it consists in the application of a (possibly iterated) nonlinear 
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smoothing formula, which preserves the II norm, at each time step. We consider 
first the case of a single conservation law like in Section III. 

At each time step, we add a corrective term Qvn+l to the vector v”+l computed 
by the method of Section III, i.e., the vector vn+l is replaced by the vector 

Cn+l = vn+l + Qvn+l, 
(5.1) 

where Q is a nonlinear operator which is defined as follows. Let w(x) be an arbitrary 
function of x and let w be the vector with components wi = w(xi), i = 0, l,..., I. 
Let r& be the value at xi of the linear function which interpolates w between the 
points x~...~ and xi+1 , i.e., 

8i = ((Xi+1 - Xi) wi-l + (Xi - Xi-l) Wi+l>/(Xi+l - Xi-11 (5.2) 
and let 

PW$ = tii - wi ) for 1 GiGI---I. (5.3) 

The components Qwi of the vector Qw are defined by 

Qwi = yiS2wi , for l<i<Z--1, ’ 
Qwo = QwI = 0, (5.4) 

where the coefficients yr depend on w and satisfy 0 d yi < 1. In order that the 
discrete analog of the conservation relation (3.6) remains satisfied after the 
correction (5.1), it is necessary that 

I-l 

which yields 

z. (-%+I - -MQwi + Qwi+J = 0, 

I-1 

zl YdXi+l - xi-l) 62wi = O* (5.5) 

This condition leads to the following choice for the coefficients yi . Let 9 be the 
set of indices i which satisfy at least one of the two conditions: 

S2wi . S2wi+l < 0, or s2wi - s2w&l < 0. 

Let J?+ be the subset of 9 such that a2wi > 0 and K be the subset of 4 such that 
a2wi -C 0. Let w be a constant, 0 < w < 1. We take 

Yi = 

1 

0, if i$S, 
Y9 if iEd?+, (5.6) I 
Y9 if iEK, 

where y and y’ are positive constants which are uniquely determined by (5.5) and 
the condition 

Max{y, y’} = w. (5.7) 
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Let 

Then, condition (5.5) gives yS - y’s’ = 0, from which we deduce 

(i) y=wandy’=wS/S’ifS<S’. 
(ii) y=wS’/Sandy’=wifS>,S’. 

Remark 5.1. In the case of equally spaced mesh-points and of a smooth 
function w, we have 

PWf = ; (Wdel - 2w, + Wi+1) - f w”(xJ, 

where h = xi+1 - xi = Xi - Xi-1 . Hence, QWi - +yih2W”(Xi), which shows 
that our correction corresponds to the analog of a viscosity which is introduced 
separately at each time step like in a fractional step method (such a method was 
also used in [4]). The coefficients yi are chosen in such a way that this viscosity is 
introduced only near the points where the sign of the second derivative w” changes, 
which has the effect of damping the oscillations. 

Iterated Corrections 

Instead of the correction (5.1) that we can write as P+l = (I+ Q) vn+l, where I 
is the identity operator, we can use the correction given by 

+n+l = (I + Q)” yn+l, (5.9 

where v is an integer > 1. Formula (5.8) means that we apply successively v times 
the correction procedure described above. 

Case of a System of Conservation Laws 

We apply the foregoing procedure to each component of the vector V. 

VI. NUMERICAL EXPERIMENTS 

VI. 1. Burgers Equation 

We consider first the initial value problem for the single equation: 

(WW + i@/qv2) = 0, (6.1) 
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with various types of initial conditions. We will use a rectangular grid and we will 
exhibit the effect of the pseudoviscosity described in Section VI. 

(a) Propagation of a discontinuity. We take the initial condition 

v”(x) = I 
1, for x < 3, o 
, for x > 3. (6.2) 

The jump condition (2.6) shows that the exact solution is 

e, t> = 1;; 
for x < 3 + t/2, 
for x > 3 + t/2. 

For the computations we replace the pure initial value problem by an equivalent 
mixed initial-boundary value problem relative to the domain 

22 = {(x, t); 0 < x < 20, t > O}. 

We impose the boundary condition: ~(0, t) = 1. 
Figure 5 represents the exact and computed solutions at the time t = 20 The 

computations were made with rectangular elements and the mesh sizes: 
dx = At = 0.2. We show the computed solution in three cases: no pseudo- 
viscosity, simple pseudoviscosity, and iterated pseudoviscosity. In this last case, 
the discontinuity is spread out on three mesh-sizes only and there are no oscil- 
lations; Table I permits a more precise comparison of the computed values with the 
exact values of the solution. The computations were performed on an IBM 370-155. 
At each time-step we have solved the nonlinear system of algebraic equations by 
the iterative method (3.19) and we have used the following criterion to stop the 
iterations. 

oIi4txI I(u;+l*z+l - u~+l~z)/Z);+lpz+l / < 10-6. (6.3) 

Then, the number of iterations is approximately equal to 5. The computing time, 
which depends also on the iterated pseudoviscosity is of the order of 30 set; no 
effort has been made to reduce this time, since we are primarily interested in 
studying the accuracy of the method. 

(b) Disappearance of a discontinuity. We take the initial condition 

u”(x) = I 
0, for x < 3, 
1 
9 for x > 3. 

It is well known (see for example [5]) that the solution of the initial value problem 
(6.1), (6.4) is not unique. But there exists a unique solution which satisfies a so- 
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0 2 4 6 8 10 12 14 16 18 20 

X 

F+G. 5. Burgers equation: propagation of a discontinuity. * = exact solution; q = computed 
solution with no pseudoviscosity; A = computed solution with simple pseudoviscosity (v = 1, 
w = 0.5); o = computed solution with iterated pseudoviscosity (v = 5, o = 0.7). 

TABLE I 
Exact Values u and Computed Values oh in the Neighborhood 

of the Discontinuity for Burgers Equation 1 
(iterated pseudoviscosity: Y = 5, w = 0.7) 

x V Vh 

12.0 
12.2 
12.4 
12.6 
12.8 
13.0 
13.2 
13.4 
13.6 

1.014 
1.020 
1.020 
0.983 
0.642 
0 307 
0.008 

9.6 x 1O-e 
1.1 x 10-l’ 
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called “entropy condition” and which is stable under small perturbations. This 
solution is 

0, for x < 3, 
u(x, t) = 

1 
(x - 3)/t, for 3 < x < 3 + t, (6.5) 
1, for x > 3 + t. 

This solution is the one we want to compute. 
Figure 6 represents the exact and computed solutions at the time t = 10. 

The mesh-sizes are the same as previously. On the graph the curve representing 
the computed solution in the case of pseudoviscosity is harly discernable from the 
curve representing the exact solution, 

0.8 
t 

0.6 

-0.6 

-0.8 -~ ~-- __ 

-1.0 
0 2 4 6 8 10 12 14 16 18 20 

t = 10 

FIG. 6. Burgers equation: disappearance of a discontinuity. * = exact solution; 0 = com- 
puted solution with no pseudoviscosity; o = computed solution with iterated pseudoviscosity 
(v = 5, w = 0.5). 
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V1.2. Equations of Isentropic Flow 

We consider the isentropic flow of a polytropic gas. The equations describing 
the flow are (2.1) and (2.15) and the equation of state is 

P = POWPO)’ (6.6) 

(isentropic equation of state for a polytropic gas), where we take y = 1.4, p” = 100, 
p” = 1.4 (all units are C.G.S.). The initial condition is 

PO(X) = po = 1.4, u”(x) = 0, vx. (6.7) 

The boundary conditions are (2.10) and (2.11) together with (2.9); in (2.10) the 
function r(t) is chosen in such a way that the corresponding function a(t) which 
describes the movement of the free boundary is 

a(t) = 10 + (1 - tz)1/2, for O<t<l. (6.8) 

3.2 

2.6 

p2.4 

1.6 

1.4 
o 12 3 4 5 6 7 8 9 IO 

X 

7. Equations of isentropic flow. * = exact values of p; A = computed values of p. 
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(The function r(t) as well as the solution V can be determined exactly by means 
of an analytic method based on the Rieman invariants). 

To illustrate our results we show a comparison of the exact and computed 
values of p and u at the time t = 0.995 on Figs. 7 and 8, respectively. For the 
computations we have taken the initial mesh-size equal to 0.2 in the x-direction 

u- 5 

-6 

0123456789w 

FIG. 8. Equations of isentropic flow. * = exact values of U; A = computed values of u. 

TABLE II 

Equations of Isentropic Flow 

t = 0.995 Exact Computed 

a’(t) -9.962 -9.340 

4) - 40) -0.9002 -0.8986 

Note. u’(t) = speed of the free boundary; 
u(r) = position of the free boundary. 
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except near the free boundary where we have subdivided the last two space- 
intervals in order to avoid a too large variation of the solution within each interval. 
At each time step we use a division of the interval (0, a(t)) which is similar to the 
initial division, i.e., a-in = (~/a”) ~~0. The time step is equal to 0.5 x 10-3. We 
have used iterated pseudoviscosity with v = 5 and o = 0.5. For the iterative 
solution of the system of algebraic equations, we have used the same criterion 
as (6.3); the number of iterations is of the order of 5. The computation time until 
t = 0.995 is 15 min (let us remark that the computation time necessarily tends 
to infinity as we approach t = 1, because of the singularity of the solution at 
t = 1 which imposes to take smaller and smaller mesh-sizes). 

On the free boundary the computed and exact values of p are identical since 
these two values are obtained directly from the boundary condition (2.10) and the 
equation of state (2.14). The comparison of the two corresponding values of u is 
particularly interesting since it shows how good the approximation of the free 
boundary is. These values are given on Table II. 

FIG. 9. 

P 

3.2 

2.8 

2.6 

2.4 

i.6) / I I I I I #I 
I 

0 1 2 3 4 5 6 7 8 9 IO 
X 

Equations of general flow. * = exact values of p; A = computed values of p. 
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VI.3. Equations of General Flow 

We consider now an arbitrary flow (isentropic or not) of the same gas as in 
Section VI.2. This flow is represented by the general equations (2.1) and (2.8), 
while the equation of state is 

P = (r - 1) P% (6.9) 

(which is the general equation of state for a polytropic gas) with y = 1.4. 

(a) Isentropic J~OW treated as a general flow. First, we consider an isentropic 
flow; but, instead of using the reduced equations (2.1), (2.15), and (6.6) as we have 
done in Section VI.2, we use the general equations (2.1), (2.8), and (6.9), i.e., we 
perform the computations like in the general nonisentropic case. We take the 
initial condition 

p”(x) = 1.4, u”(x) = 0, p”(x) = 100, (6.10) 

0 

u -6 

-7 

-T-T-F 

i 
0 1 2 3 4 5 6 7 8 9 10 

FIG. 10. Equations of general flow. * = exact values of u; A = computed values of u. 
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which yields corresponding initial values for q, E, and E. Thus, the initial state 
of fluid is the same as in VI.2. We take also the same boundary conditions (2.10), 
(2.1 l), with the same function n(t). It follows that the flow is identical to the isen- 
tropic flow considered in VI.2 as long as no shock appears. 

We illustrate the results in the same way as in VI.2. Figures 9 and 10 show the 
exact and computed values of p and U, respectively, at the time t = 0.995, and 
Table III gives the exact and computed values of the speed u’(t) and of the displace- 
ment a(t) - a(O) of the free boundary. The computations were made with the same 
mesh-sizes as in VI.2. 

TABLE III 

Equations of General Flow 

t = 0.995 Exact Computed 

a’(t) -9.962 -9.873 

a(t) - 40) -0.9002 -0.9001 

(b) Propagation of a shock. We take again the initial condition (6.10) and the 
boundary conditions (2.10) and (2.11); but this time we choose n(t) = 1000. The 
exact solution corresponds to a shock which originates on the free boundary 
at the time t = 0 and propagates through the fluid at a constant speed. The state 
of the gas on each side of the shock is constant. The results of our computation 
for t = 0.5 are illustrated on Fig. 11 and Table IV; the mesh-sizes and the pseudo- 
viscosity are the same as in VI.2. 

We must say that the computation of solutions with rapid variations such as 
those considered here and in VI.2 is possible only if we use a fine enough grid. 
If the grid is too coarse, we are led to computational impossibilities resulting from 
negative values of p near the free boundary. 

TABLE IV 

Propagation of a Shock 

t = 0.5 Exact Computed 

a’(t) 
4) - 40) 

-21.777 -21.769 

- 10.888 - 10.905 
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U 

-6 

-16 

-18 

-20 

-22 
01 2 3 4 5 6 7 8 9 10 

FIG. 11. Equations of general flow: shock propagation. * = exact values of U; A = computed 
values of II. 

CONCLUSION 

The method of space-time finite elements is primarily intended to solve multi- 
dimensional problems. This method must permit one to follow the free boundary 
and the interfaces like the Lagrangean methods and avoid the usual mesh-scrambling 
of these methods. However, before undertaking numerical experiments for 
2-dimensional problems, we plan to experiment with several variants of the present 
method in the l-dimensional case, in order to improve the computation of non- 
smooth solutions; in particular, we plan to experiment with discontinuous finite 
elements such as those recently developed by Reed and Hill [8], Lesaint and Gtrin- 
Roze [3], Lesaint and Raviart [7] and Lesaint [6], for the transport equation. Let 
us also mention that we are presently performing successful numerical experiments 
with space-time finite elements in the 2-dimensional case, for the Stefan problem. 
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